skip to main content


Search for: All records

Creators/Authors contains: "Ward-Duong, Kimberly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a multi-epoch spectroscopic study of LkCa 4, a heavily spotted non-accreting T Tauri star. Using SpeX at NASA’s Infrared Telescope Facility (IRTF), 12 spectra were collected over five consecutive nights, spanning ≈1.5 stellar rotations. Using the IRTF SpeX Spectral Library, we constructed empirical composite models of spotted stars by combining a warmer (photosphere) standard star spectrum with a cooler (spot) standard weighted by the spot filling factor,fspot. The best-fit models spanned two photospheric component temperatures,Tphot= 4100 K (K7V) and 4400 K (K5V), and one spot component temperature,Tspot= 3060 K (M5V) with anAVof 0.3. We find values offspotto vary between 0.77 and 0.94 with an average uncertainty of ∼0.04. The variability offspotis periodic and correlates with its 3.374 day rotational period. Using a mean value forfmeanspotto represent the total spot coverage, we calculated spot corrected values forTeffandL. Placing these values alongside evolutionary models developed for heavily spotted young stars, we infer mass and age ranges of 0.45–0.6Mand 0.50–1.25 Myr, respectively. These inferred values represent a twofold increase in the mass and a twofold decrease in the age as compared to standard evolutionary models. Such a result highlights the need for constraining the contributions of cool and warm regions of young stellar atmospheres when estimatingTeffandLto infer masses and ages as well as the necessity for models to account for the effects of these regions on the early evolution of low-mass stars.

     
    more » « less
  2. Abstract Accreting protoplanets are windows into planet formation processes, and high-contrast differential imaging is an effective way to identify them. We report results from the Giant Accreting Protoplanet Survey (GAPlanetS), which collected H α differential imagery of 14 transitional disk host stars with the Magellan Adaptive Optics System. To address the twin challenges of morphological complexity and point-spread function instability, GAPlanetS required novel approaches for frame selection and optimization of the Karhounen–Loéve Image Processing algorithm pyKLIP . We detect one new candidate, CS Cha “c,” at a separation of 68 mas and a modest Δmag of 2.3. We recover the HD 142527 B and HD 100453 B accreting stellar companions in several epochs, and the protoplanet PDS 70 c in 2017 imagery, extending its astrometric record by nine months. Though we cannot rule out scattered light structure, we also recover LkCa 15 “b,” at H α ; its presence inside the disk cavity, absence in Continuum imagery, and consistency with a forward-modeled point source suggest that it remains a viable protoplanet candidate. Through targeted optimization, we tentatively recover PDS 70 c at two additional epochs and PDS 70 b in one epoch. Despite numerous previously reported companion candidates around GAplanetS targets, we recover no additional point sources. Our moderate H α contrasts do not preclude most protoplanets, and we report limiting H α contrasts at unrecovered candidate locations. We find an overall detection rate of ∼36 − 22 + 26 % , considerably higher than most direct imaging surveys, speaking to both GAPlanetS’s highly targeted nature and the promise of H α differential imaging for protoplanet identification. 
    more » « less
    Free, publicly-accessible full text available May 5, 2024
  3. Abstract We report an Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum detection of the accretion disk around SR 12 c, an ∼11 M Jup planetary-mass companion (PMC) orbiting its host binary at 980 au. This is the first submillimeter detection of a circumplanetary disk around a wide PMC. The disk has a flux density of 127 ± 14 μ Jy and is not resolved by the ∼0.″1 beam, so the dust disk radius is likely less than 5 au and can be much smaller if the dust continuum is optically thick. If, however, the dust emission is optically thin, then the SR 12 c disk has a comparable dust mass to the circumplanetary disk around PDS 70 c but is about five times lower than that of the ∼12 M Jup free-floating OTS 44. This suggests that disks around bound and unbound planetary-mass objects can span a wide range of masses. The gas mass estimated with an accretion rate of 10 −11 M ☉ yr −1 implies a gas-to-dust ratio higher than 100. If cloud absorption is not significant, a nondetection of 12 CO(3–2) implies a compact gas disk around SR 12 c. Future sensitive observations may detect more PMC disks at 0.88 mm flux densities of ≲100 μ Jy. 
    more » « less
  4. Abstract

    High-contrast imaging has afforded astronomers the opportunity to study light directly emitted by adolescent (tens of megayears) and “proto” (<10 Myr) planets still undergoing formation. Direct detection of these planets is enabled by empirical point-spread function (PSF) modeling and removal algorithms. The computational intensity of such algorithms, as well as their multiplicity of tunable input parameters, has led to the prevalence of ad hoc optimization approaches to high-contrast imaging results. In this work, we present a new, systematic approach to optimization vetted using data of the high-contrast stellar companion HD 142527 B from the Magellan Adaptive Optics Giant Accreting Protoplanet Survey (GAPlanetS). More specifically, we present a grid search technique designed to explore three influential parameters of the PSF subtraction algorithmpyKLIP: annuli, movement, and KL modes. We consider multiple metrics for postprocessed image quality in order to optimally recover at Hα(656 nm) synthetic planets injected into contemporaneous continuum (643 nm) images. These metrics include peak (single-pixel) signal-to-noise ratio (S/N), average (multipixel average) S/N, 5σcontrast, and false-positive fraction. We apply continuum-optimized KLIP reduction parameters to six Hαdirect detections of the low-mass stellar companion HD 142527 B and recover the companion at a range of separations. Relative to a single-informed, nonoptimized set of KLIP parameters applied to all data sets uniformly, our multimetric grid search optimization led to improvements in companion S/N of up to 1.2σ, with an average improvement of 0.6σ. Since many direct imaging detections lie close to the canonical 5σthreshold, even such modest improvements may result in higher yields in future imaging surveys.

     
    more » « less
  5. Abstract

    Companions embedded in the cavities of transitional circumstellar disks have been observed to exhibit excess luminosity at Hα, an indication that they are actively accreting. We report 5 yr (2013–2018) of monitoring of the position and Hαexcess luminosity of the embedded, accreting low-mass stellar companion HD 142527 B from the MagAO/VisAO instrument. We usepyklip, a Python implementation of the Karhunen–Loeve Image Processing algorithm, to detect the companion. Usingpyklipforward modeling, we constrain the relative astrometry to 1–2 mas precision and achieve sufficient photometric precision (±0.2 mag, 3% error) to detect changes in the Hαcontrast of the companion over time. In order to accurately determine the relative astrometry of the companion, we conduct an astrometric calibration of the MagAO/VisAO camera against 20 yr of Keck/NIRC2 images of the Trapezium cluster. We demonstrate agreement of our VisAO astrometry with other published positions for HD 142527 B, and useorbitize!to generate a posterior distribution of orbits fit to the relative astrometry of HD 142527 B. Our data suggest that the companion is close to periastron passage, on an orbit significantly misaligned with respect to both the wide circumbinary disk and the recently observed inner disk encircling HD 142527 A. We translate observed Hαcontrasts for HD 142527 B into mass accretion rate estimates on the order of 4–9 × 10−10Myr−1. Photometric variation in the Hαexcess of the companion suggests that the accretion rate onto the companion is variable. This work represents a significant step toward observing accretion-driven variability onto protoplanets, such as PDS 70 b&c.

     
    more » « less
  6. Abstract

    The HR 2562 system is a rare case where a brown dwarf companion resides in a cleared inner hole of a debris disk, offering invaluable opportunities to study the dynamical interaction between a substellar companion and a dusty disk. We present the first ALMA observation of the system as well as the continued Gemini Planet Imager monitoring of the companion’s orbit with six new epochs from 2016 to 2018. We update the orbital fit, and in combination with absolute astrometry from GAIA, place a 3σupper limit of 18.5MJon the companion’s mass. To interpret the ALMA observations, we used radiative transfer modeling to determine the disk properties. We find that the disk is well resolved and nearly edge-on. While the misalignment angle between the disk and the orbit is weakly constrained, due to the short orbital arc available, the data strongly support a (near) coplanar geometry for the system. Furthermore, we find that the models that describe the ALMA data best have inner radii that are close to the companion’s semimajor axis. Including a posteriori knowledge of the system’s SED further narrows the constraints on the disk’s inner radius and places it at a location that is in reasonable agreement with (possibly interior to) predictions from existing dynamical models of disk truncation by an interior substellar companion. HR 2562 has the potential over the next few years to become a new test bed for dynamical interaction between a debris disk and a substellar companion.

     
    more » « less
  7. Abstract

    We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16μm. At a separation of ∼0.″82 (8731+108au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σcontrast limits of ∼1 × 10−5and ∼2 × 10−4at 1″ for NIRCam at 4.4μm and MIRI at 11.3μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJupbeyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by aBT-SETTLatmospheric model from 1 to 16μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained betweenlogLbol/L= −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  8. Abstract

    We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b isa<20MJupwidely separated (∼8″,a= 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color–magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST's NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20μm at resolutions of ∼1000–3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.

     
    more » « less